考虑多维因素的工程项目总投资预测模型构建与应用
DOI:
CSTR:
作者:
作者单位:

天津滨海建投项目管理有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Construction and Application of a Total Investment Prediction Model for Engineering Projects Considering Multi-Dimensional Factors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着新型电力系统的推进和“降本增效”战略的实施,工程项目总投资的精准预测成为提升企业管理效率的重要手段。本文面向变电站工程造价预测中存在的高维、非线性、多变量等特性,构建了一种融合灰色关联分析(GRA)与麻雀搜索算法(SSA)优化BP神经网络的智能预测模型(SSA-BP)。通过鱼骨图分析及GRA方法,从初选的安装工程成本因素库中筛选出相关性大于0.8的关键指标,包括单机容量、低压侧断路器数量、控制电缆数量及其单价等共20个技术因素作为模型输入。利用某省5年变电站工程数据进行训练与测试,结果显示该模型在30组测试数据上的平均相对误差为4.85%,最大误差14.12%,最小误差0.11%。相较于传统BPNN、PSO-BP和WOA-BP模型,SSA-BP模型在RMSE、MAE和MAPE等指标上分别降低至545.78、367.18和6.56%,展现出更优的预测性能和实用价值,能为工程投资决策提供有力支持。

    Abstract:

    With the advancement of new-type power systems and the implementation of the "cost reduction and efficiency improvement" strategy, accurate prediction of total investment in engineering projects has become an essential approach to enhancing enterprise management efficiency. Targeting the high-dimensional, nonlinear, and multivariable characteristics in substation project cost forecasting, this study develops an intelligent prediction model that integrates Grey Relational Analysis (GRA) with a Sparrow Search Algorithm (SSA)-optimized Backpropagation Neural Network (BP), referred to as the SSA-BP model. Using fishbone diagram analysis and GRA, 20 key technical indicators with correlation values greater than 0.8—such as single-unit capacity, number of low-voltage circuit breakers, quantity and unit price of control cables—were selected as model inputs. The model was trained and tested using five years of substation engineering data from a province. Results show that the model achieves an average relative error of 4.85%, with a maximum error of 14.12% and a minimum error of 0.11% across 30 test samples. Compared to conventional BPNN, PSO-BP, and WOA-BP models, the SSA-BP model exhibits improved prediction performance, with RMSE, MAE, and MAPE reduced to 545.78, 367.18, and 6.56%, respectively, demonstrating strong practical value in supporting investment decision-making for engineering projects.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-19
  • 最后修改日期:2025-12-08
  • 录用日期:2025-12-11
  • 在线发布日期:
  • 出版日期:
文章二维码